Bernoulli-Effekt

Wir haben doch alle schon einmal den Namen “Bernoulli” im Physikunterricht gehört. Habt ihr allerdings gewusst, dass es mehrere Genies mit diesem Namen gab? Heute beschäftigen wir uns aber nur mit einem davon: Daniel Bernoulli. Dieser beschrieb mit der Bernoulli-Gleichung den nach ihm benannten “Bernoulli-Effekt”.  Um diesen Effekt zu verdeutlichen, erläutern wir zuerst drei Experimente für euch, die ihr auch einfach zu Hause nachmachen könnt: 

1. Strohhalm-Experiment

Materialien: Strohhalm, Styroporball (Tischtennisball geht auch, ist aber schwieriger) 

Zuerst pustest du in einen Strohhalm, dessen vorderen Teil du nach oben biegst (wird im Video genauer gezeigt). Danach legst du die Styroporkugel vorsichtig über die Öffnung. Jetzt wirst du bemerken, dass der Ball an seinem Platz bleibt und über dem Strohhalm schwebt. Wenn man aufhört, in den Strohhalm zu blasen, fällt der Ball wieder hinunter.  

2. Trichter-Experiment 

Materialien: Trichter, Tischtennisball oder Styroporball 

Als Erstes nimmst du den Trichter mit der großen Öffnung auf den Boden gerichtet und hältst den Ball hinein. Dann pustest du von oben in den Trichter hinein und wenn du den Ball nun loslässt, kannst du beobachten, dass dieser im Trichter bleibt und nicht auf den Boden fällt, wie man es sich vielleicht aufgrund der Schwerkraft erwarten würde. 

3. Papier-Experiment 

Materialien: Blatt Papier 

Du hältst ein Blatt Papier vor deinem Mund und fängst an zu pusten, jetzt kannst du wieder beobachten, wie  sich das Blatt wellenartig nach oben und unten bewegt. 

Jetzt werden wir euch den Effekt etwas näher erklären. Da bei allen drei Experimenten die Luft strömt, nimmt der Druck ab und dadurch landet der Tischtennisball zum Beispiel nicht am Boden, sondern schwebt in einem gewissen Bereich.
Das lässt sich durch den indirekten Zusammenhang zwischen dem statischen und dem dynamischen Druck erklären: Da der dynamische Druck aufgrund der Luftströmungen (verursacht durch das Pusten) zunimmt, muss der statische Druck logischerweise abnehmen, da die Summe der beiden Drücke stets konstant ist.

Folgende Formel verdeutlicht den Bernoulli-Effekt und insbesondere den Zusammenhang zwischen statischem und dynamischem Druck (1 ist als vorher (d.h. vor dem Pusten), 2 als nachher (d.h. während des Pustens) zu verstehen):

Ist der Zusammenhang zu schwierig zum Verstehen, kann man sich auch modellhaft vorstellen, dass die Luft den Styroporball kugelartig umschließt und dieser somit nicht „entkommen“ kann. Das erklärt auch die Rotationen des Balls. Beim Beenden der Luft-Zufuhr verschwindet diese „Luft-Hülle“ wieder und der Ball fällt aufgrund der Schwerkraft zum Boden (zumindest, wenn diese Experimente unter Standardbedingungen auf der Erde durchgeführt werden).

Quellen:

Berndorff, Jan; Hüttmann, Kristin: Einstein für Quanten Dilettanten 2022. Ein vergnüglicher Crashkurs in Sachen Naturwissenschaften. Unterhaching; Athesia Kalenderverlag 2021, S. 09.06.2022 
Gollenz, Franz; Breyer, Gustav; Reichel, Erich; Zunzer, Stefan: Physik 2. Wien: Österreichischer Bundesverlag 2020, S. 99 – 103

Fotocredit: © by the ScienceBlog Team

reviewed and extended by Michael Himmelbauer

How to grow a größere Schwedenbombe

von Pia, Paul, Jana und Sarah

Der Zusammenhang zwischen Druck und Kraft wird in folgender Formel ausgedrückt:

Luftdruck:

Jede Schülerin und jeder Schüler ist dauerhaftem Druck ausgesetzt. Nicht nur dem Notendruck, sondern auch dem physikalischen Druck. 😉 Dieser beschreibt die Wirkung einer Kraft auf eine bestimmte Fläche. Es kommt oft vor, dass der Druck und die Kraft vertauscht oder verglichen werden, jedoch gibt es einen großen Unterschied, denn die Kraft gibt an, wie stark ein Körper auf einen anderen einwirkt. Ihre SI-Einheit lautet Pascal. Angegeben wird er jedoch meist in bar, 105 Pascal entsprechen 1 bar. Somit sind wir einem dauerhaften Luftdruck von 1 bar ausgesetzt. Dieser ändert sich je nach Position des Gegenstandes in der Erdatmosphäre, beispielsweise ist man auf der Zugspitze einem Druck von nur 0,7 bar ausgesetzt.

Zusammenhang zwischen Druck und Kraft: 
Ist der Druck, der wegen der Gewichtskraft der Luftsäule oberhalb eines Körpers auf diesen Körper wirkt. Die Position des Gegenstandes beeinflusst den Luftdruck auf den Gegenstand.

Spritzenexperiment:

Materialien: zwei verschieden große Spritzen, ein Plastikschlauch, Klebeband 

Beschreibung: Im unten angeführten Bild kann man sehen, wie der Versuch aufgebaut ist. Dann füllt man den Schlauch und die Spritzen ohne Luft auf. Drückt man nun eine Spritze hinein, geht die andere hinaus. So funktioniert unter anderem auch eine Hebebühne. Versucht man nun, beide Spritzen gleichzeitig hineinzudrücken, kann man beobachten, dass sich die Kleinere leichter hineindrücken lässt als die Große. Das kommt daher, dass die Formel für den Druck die Fläche (Formelzeichen A) beinhaltet. Da die Fläche bei der kleinen Spritze kleiner ist als bei der großen, ist dementsprechend der Druck bei gleicher Kraft größer (indirekte Proportionalität).

Magdeburger Halbkugeln:

Materialien: Vakuumpumpe, Magdeburger Halbkugeln 

Beschreibung: Mithilfe der Vakuumpumpe wird ein Großteil der Luft aus den Kugeln gepumpt (ein perfektes, d.h. 100-prozentiges Vakuum lässt sich selbst mit einer optimalen Pumpe nicht erreichen). Danach probiert man, sie auseinander zu ziehen. Was vielleicht auf den ersten Blick leicht aussieht, ist beim Probieren dann doch etwas schwieriger. Man kann sich ausrechnen, wieviel Kraft benötigt wird, um sie auseinander zu ziehen. Wenn man die Formel von oben nimmt und die Werte unserer Kugel einsetzt und danach die Formel umformt, kommt 100000 Pa ⋅ 0,00636 m2 = 636 N heraus.

Schwedenbombenexperiment 

Materialien: Vakuumpumpe, Schwedenbomben 

Beschreibung: Durch die Verwendung der Vakuumpumpe werden die Schwedenbomben von einen luftarmen Raum umgeben. Der Schaum enthält eine große Menge an Luft, die sich durch das Vakuum und damit das Fehlen eines Drucks von außen ausdehnt. Wenn man nun wieder Luft einströmen lässt, fällt der Schaum aufgrund des außen herrschenden Luftdrucks zusammen.
Folgendes Video visualisiert das Experiment:

Zusammenfassend kann also festgehalten werden, dass der Druck trotz der negativen psychologischen Wirkungen etwas Alltägliches ist, er aber auch durch faszinierende und gleichzeitig spannende Experimente erforscht werden kann. Ohne ihn würde es kaum Lebewesen geben, denn gäbe es keinen Umgebungsluftdruck, würde mit der menschlichen Lunge genau dasselbe passieren wie mit der Schwedenbombe, was aber nicht so gut schmeckt…

Quellen:
Anon.: Der Druck in Physik. https://www.lernhelfer.de/schuelerlexikon/physik-abitur/artikel/der-druck?msclkid=16e0ad85c49011eca6fb8fb295f6e88a# (Zugriff: 25.04.2022) 
Anon.: Mechanik. Druck. https://www.leifiphysik.de/mechanik/druck-und-auftrieb/grundwissen/druck?msclkid=16e000e0c49011ec8117477eac07a095 (Zugriff: 25.04.2022) 
Anon.: Mechanik. Luftdruck. https://www.leifiphysik.de/mechanik/druck-und-auftrieb/grundwissen/luftdruck?msclkid=0fb2c86ac49211ec9e104fd4affbf4f4 (Zugriff: 25.04.2022) 

Fotocredit: © by the ScienceBlog Team

reviewed and extended by Michael Himmelbauer